

Calibrating LSST photometric redshifts with crosscorrelations Jeffrey Newman, U. Pittsburgh / PITT-PACC

Deputy Spokesperson, LSST Dark Energy Science Collaboration

Two spectroscopic needs for photo-z work:

training and calibration

Better training of algorithms using objects with spectroscopic redshift measurements shrinks photo-z errors and improves DE constraints, esp. for **BAO** and clusters

Benitez et al. 2009

- Training datasets will contribute to calibration of photo-z's. "Perfect training sets can solve calibration needs.

Two spectroscopic needs for photo-z work:

training and calibration

Better training of algorithms using objects with spectroscopic redshift measurements shrinks photo-z errors and improves DE constraints, esp. for BAO and clusters

Training datasets will contribute to calibration of photo-z's.
 Perfect training sets can solve calibration needs.

Two spectroscopic needs for photo-z work:

training and calibration

For weak lensing and supernovae, individual-object photo-z's do not need high precision, but the calibration must be accurate - i.e., bias and errors need to be extremely well-understood

Newman et al. 2013

− uncertainty in bias, $σ(δ_z) = σ(<z_p - z_s>)$, and in scatter, $σ(σ_z) = σ(RMS(z_p - z_s))$, must both be <~0.002(1+z) for Stage IV surveys

Biggest concern: incompleteness in training/calibration datasets

- In current deep redshift surveys (to i~22.5/R~24), 25-60% of targets fail to yield secure (>95% confidence) redshifts
- Redshift success rate depends on galaxy properties - losses are systematic, not random
- Estimated need 99-99.9%
 completeness to prevent
 systematic errors in calibration
 from missed populations

Data from DEEP2 (Newman et al. 2013) and zCOSMOS (Lilly et al. 2009)

Note: even for 100% complete samples, current falsez rates can compromise calibration accuracy

 Only the highestconfidence redshifts should be useful for precision calibration: lowers spectroscopic completeness further when restrict to only the best

Based on simulated redshift distributions for ANNz-defined DES bins in mock catalog from Huan Lin, UCL & U Chicago, provided by Jim Annis

3 Ways to address spectroscopic incompleteness for photo-z calibration — all may be feasible

I. Throw out objects lacking secure photo-z calibration

- ID regions in e.g. ugrizy space where redshift failures occurred
- Eliminating a fraction of sample has modest effect on FoM
 - Not yet known if sufficiently clean regions exist

3 Ways to address spectroscopic incompleteness for photo-z calibration — all may be feasible

II. Incorporate additional information

- Longer exposure/wider wavelength range spectroscopy
 (JWST, etc.) for objects that fail to give redshifts in first try
 - Not yet known if will yield sufficient completeness
- Develop comprehensive model of galaxy spectral evolution constrained by redshifts obtained
 - A major research program, not there now

III. Cross-correlation techniques

118

S. Phillipps and T. Shanks

Figure 1. Variation of excess density of galaxies, Σ_{excess} , with absolute magnitude (for 0.5 mag bins). Solid (dashed) curve represents a Schechter function with slope parameter =-1 (-1.25) normalized to agree near M-5 log h=-19.8.

- Phillips & Shanks 1987: Can measure luminosity function by measuring angular cross-correlation of photometric galaxies with objects of known spec-z, in bins of magnitude (260 spec-z's in ~150 sq. deg.)
- If you can measure luminosity function at each z, you can also determine the redshift distribution. . .

- Galaxies of all types cluster together: trace same dark matter distribution
- Galaxies at significantly different redshifts do not cluster together
- From observed clustering of objects in one sample vs. another (as well as information from autocorrelations), can determine the fraction of objects in overlapping redshift range
- Do this as a function of spectroscopic z to recover p(z)

- Photometric sample (LSST)
- Spectroscopic sample (DEEP2)

- Key advantage: spectroscopic sample can be systematically incomplete and include only bright galaxies!
- See: Newman 2008, Ho et al. 2008,
 Matthews & Newman 2010, 2011

Blue: z_{phot} distribtion of objects with $0.7 < z_{phot} < 0.9$

Black: True z distribution of sample, spanning 24 widely-separated fields

Red: Cross-correlation reconstruction with only a R<24, 4 deg² survey

- Key advantage: spectroscopic sample can be systematically incomplete and include only bright galaxies!
- See: Newman 2008, Ho et al. 2008,
 Matthews & Newman 2010, 2011

Red: Photo-z distribution for LRGs in SDSS

Black: Cross-correlation reconstruction using only SDSS QSOs (rare at low z!)

Menard et al. 2013

- Key advantage: spectroscopic sample can be systematically incomplete and include only bright galaxies!
- See: Newman 2008, Ho et al. 2008,
 Matthews & Newman 2010, 2011

Red: Photo-z distribution for LRGs in SDSS

Black: Cross-correlation reconstruction using only SDSS Mg II absorbers (even rarer!)

Menard et al. 2013

Cross-correlation methods have been used to test SDSS photo-z's

QSO samples are very useful at z>1: eBOSS and DESI will provide many

Menard et al. 2013

Cross-correlation methods can provide accurate redshift calibration for LSST

•>500 degrees of overlap with DESI-like survey would meet LSST science requirements for photo-z calibration errors to be no worse than statistical errors on weak lensing measurements

• 4000 sq. deg of overlap expected.

Snowmass White Paper:
Spectroscopic Needs for Imaging DE
Experiments

Spectroscopic requirements for cross-correlation methods

- Photo-z calibration would still be degrading Figure of Merit
- To reduce degradation to <10%, requirements are more stringent; can be met with ~20k sq. deg. overlap
- 4MOST currently plans DESIlike galaxy+QSO survey (but somewhat more dilute) in South
- DOE Cosmic Visions report recommends a wide-field Southern Spectroscopic Survey Instrument for a 4-6m telescope

Snowmass White Paper: Spectroscopic Needs for Imaging DE Experiments

Those forecasts are pessimistic!

 McQuinn & White (2013): Application of optimal estimators to cross-correlation analysis

- Makes maximum use of information on linear scales, avoids integral constraint error
- Obtain errors 2-10x smaller than Newman 2008 / Matthews & Newman 2010

Biggest concern right now: disentangling crosscorrelations from clustering and lensing magnification

- Black: cross-correlations
 between photo-z objects (z=0.75
 Gaussian) and spectroscopic
 sample as a function of z
- Blue: observed cross-correlation due to spectroscopic objects lensing photometric ones
- Red: observed cross-correlation due to photometric objects lensing spectroscopic ones
- Weak/CMB lensing could help us predict the red curves

Matthews & Newman 2014, in prep.

Cross-correlations aren't only useful for cosmology...

 Tal et al. 2012: cross-correlated SDSS photometric galaxies with LRGs to study the luminosity function to z=0.7

Figure 4. Comparison between the luminosity functions derived from individual SDSS LRG frames (blue data points) and from deep Stripe 82 stacks (green data points) in the redshift range 0.28 < z < 0.40. Solid lines are functional fits to the data using the two-component model described in Section 3. The faint-end slope of the Schechter function can be reliably measured and it has a value of -0.95.

Cross-correlations aren't only useful for cosmology...

 Ting-Wen Lan, Menard & Mo 2016: cross-correlated SDSS photometric galaxies with SDSS spectroscopic groups at 0.01 < z < 0.05 to constrain the conditional luminosity function

Conclusions

- Photo-z's are critical for dark energy experiments
- Incompleteness or incorrect redshifts in spectroscopic samples can cause systematic errors in photo-z applications
- Cross-correlation methods can calibrate photometric redshifts even using incomplete samples of only bright galaxies & QSOs
- In addition to constraining redshift distributions, spectroscopic/ photometric cross-correlations can provide powerful probes of galaxy evolution

 See Snowmass white papers on Cross-Correlations and Spectroscopic Needs for Imaging Dark Energy Experiments, http://arxiv.org/abs/1309.5384, 1309.5388

What qualities do we desire in training spectroscopy?

- Sensitive spectroscopy of ~30,000 faint objects (to i=25.3 for LSST)
 - Needs a combination of large aperture and long exposure times
- High multiplexing
 - Required to get large numbers of spectra
- Coverage of full ground-based spectral window
 - Ideally, from below 4000 Å to ~1.5μm
- Significant resolution ($R=\lambda/\Delta\lambda$ >~4000) at red end
 - Allows secure redshifts from [OII] 3727 Å line at z>1
- Field diameters > ~20 arcmin
 - Need to span several correlation lengths for accurate clustering
- Many fields, >~15
 - To mitigate sample/cosmic variance)

Summary of (some!) potential instruments

Telescope / Instrument	$rac{ ext{Collecting Area}}{ ext{(m}^2)}$	$egin{aligned} ext{Field area} \ (ext{arcmin}^2) \end{aligned}$	Multiplex	Limiting factor
Keck / DEIMOS	76	54.25	150	Multiplexing
VLT / MOONS	58	500	500	Multiplexing
Subaru / PFS (≈MSE)	53	4800	2400	# of fields
Mayall 4m / DESI	11.4	25500	5000	# of fields
WHT / WEAVE (≈4MOST)	13	11300	1000	Multiplexing
${ m GMT/MANIFEST+GMACS}$	368	314	420-760	Multiplexing
TMT / WFOS	655	40	100	Multiplexing
E-ELT / MOSAIC	978	39-46	160-240	Multiplexing

Table 2-1. Characteristics of current and anticipated telescope/instrument combinations relevant for obtaining photometric redshift training samples. Assuming that we wish for a survey of ~15 fields of at least 0.09 deg² each yielding a total of at least 30,000 spectra, we also list what the limiting factor that will determine total observation time is for each combination: the multiplexing (number of spectra observed simultaneously); the total number of fields to be surveyed; or the field of view of the selected instrument. For GMT/MANIFEST+GMACS and VLT/OPTIMOS, a number of design decisions have not yet been finalized, so a range based on scenarios currently being considered is given.

Time required for each instrument

Telescope / Instrument	$egin{array}{l} ext{Total time(y),} \ ext{DES} \ / \ 75\% \ ext{complete} \end{array}$	Total time(y), LSST / 75% complete	$egin{array}{l} ext{Total time(y),} \ ext{DES } / \ 90\% \ ext{complete} \end{array}$	Total time(y), LSST / 90% complete
Keck / DEIMOS	0.51	10.22	3.19	63.89
VLT / MOONS	0.20	4.00	1.25	25.03
Subaru / PFS (≈MSE)	0.05	1.10	0.34	6.87
Mayall 4m / DESI	0.26	5.11	1.60	31.95
WHT / WEAVE (≈4MOST)	0.45	8.96	2.80	56.03
${ m GMT/MANIFEST+GMACS}$	0.02 - 0.04	0.42 - 0.75	0.13 - 0.24	2.60 - 4.71
TMT / WFOS	0.09	1.78	0.56	11.12
E-ELT / MOSAIC	0.02 - 0.04	0.50 - 0.74	0.16-0.23	3.10 - 4.65

Table 2-2. Estimates of required total survey time for a variety of current and anticipated telescope/instrument combinations relevant for obtaining photometric redshift training samples. Calculations assume that we wish for a survey of ~15 fields of at least 0.09 deg² each, yielding a total of at least 30,000 spectra. Survey time depends on both the desired depth (i=23.7 for DES, i=25.3 for LSST) and completeness (75% and 90% are considered here). Exposure times are estimated by requiring equivalent signal-to-noise to 1-hour Keck/DEIMOS spectroscopy at i~22.5. GMT / MANIFEST + GMACS estimates assume that the full optical window may be covered simultaneously at sufficiently high spectral resolution; in some design scenarios currently being considered, that would not be the case, increasing required time accordingly.

DE systematic errors from uncertainty in photo-z calibration

- Estimates based on Gaussian error models: photo-z bias, $\delta_z = \langle z_p z_s \rangle$, and uncertainty in scatter, $\sigma(\sigma_z) = \sigma(RMS(z_p z_s))$, must be below $^{\circ}0.003 0.01$ for photo-z systematics to be subdominant in lensing/BAO (looser requirements come from better P(k) predictions)
- More realistic: need to consider catastrophic, non-Gaussian outliers.
 Can't be eliminated (e.g. HST shows 2% of faint DEEP2 objects are blends)

Hearin et al. 2010

 If drop all galaxies with z<0.3 or z>2.1, random lensing errors only 20% worse, but systematics much less (Hearin et al. 2010)

Systematic errors from photo-z catastrophic outliers

- More realistically: need to consider catastrophic, non-Gaussian outliers
- Can't be eliminated entirely:
 - ~2% of DEEP2 targets were actually galaxies at different z blurred together from ground
 - Can be difficult to distinguish one spectral break from another: degeneracies
- Some sorts of catastrophic errors worse than others
- If drop all galaxies with z<0.3 or z>2.1, lensing errors only 20% worse (Hearin et al. 2010)

Hearin et al. 2010